13 research outputs found

    Single-Cell RNA Sequencing Reveals a Dynamic Stromal Niche That Supports Tumor Growth

    Get PDF
    Here, using single-cell RNA sequencing, we examine the stromal compartment in murine melanoma and draining lymph nodes (LNs) at points across tumor development, providing data at http://www.teichlab.org/data/. Naive lymphocytes from LNs undergo activation and clonal expansion within the tumor, before PD1 and Lag3 expression, while tumor-associated myeloid cells promote the formation of a suppressive niche. We identify three temporally distinct stromal populations displaying unique functional signatures, conserved across mouse and human tumors. Whereas "immune" stromal cells are observed in early tumors, "contractile" cells become more prevalent at later time points. Complement component C3 is specifically expressed in the immune population. Its cleavage product C3a supports the recruitment of C3aR(+) macrophages, and perturbation of C3a and C3aR disrupts immune infiltration, slowing tumor growth. Our results highlight the power of scRNA-seq to identify complex interplays and increase stromal diversity as a tumor develops, revealing that stromal cells acquire the capacity to modulate immune landscapes from early disease.Peer reviewe

    MultiMAP: dimensionality reduction and integration of multimodal data.

    Get PDF
    Multimodal data is rapidly growing in many fields of science and engineering, including single-cell biology. We introduce MultiMAP, a novel algorithm for dimensionality reduction and integration. MultiMAP can integrate any number of datasets, leverages features not present in all datasets, is not restricted to a linear mapping, allows the user to specify the influence of each dataset, and is extremely scalable to large datasets. We apply MultiMAP to single-cell transcriptomics, chromatin accessibility, methylation, and spatial data and show that it outperforms current approaches. On a new thymus dataset, we use MultiMAP to integrate cells along a temporal trajectory. This enables quantitative comparison of transcription factor expression and binding site accessibility over the course of T cell differentiation, revealing patterns of expression versus binding site opening kinetics

    Mapping Rora expression in resting and activated CD4+ T cells.

    Get PDF
    The transcription factor Rora has been shown to be important for the development of ILC2 and the regulation of ILC3, macrophages and Treg cells. Here we investigate the role of Rora across CD4+ T cells in general, but with an emphasis on Th2 cells, both in vitro as well as in the context of several in vivo type 2 infection models. We dissect the function of Rora using overexpression and a CD4-conditional Rora-knockout mouse, as well as a RORA-reporter mouse. We establish the importance of Rora in CD4+ T cells for controlling lung inflammation induced by Nippostrongylus brasiliensis infection, and have measured the effect on downstream genes using RNA-seq. Using a systematic stimulation screen of CD4+ T cells, coupled with RNA-seq, we identify upstream regulators of Rora, most importantly IL-33 and CCL7. Our data suggest that Rora is a negative regulator of the immune system, possibly through several downstream pathways, and is under control of the local microenvironment

    Single-cell sequencing reveals clonal expansions of pro-inflammatory synovial CD8 T cells expressing tissue-homing receptors in psoriatic arthritis

    Get PDF
    Funder: Kennedy Trust studentshipFunder: Oxford-UCB Prize FellowshipFunder: National Institute of Health Research (NIHR) Newcastle Biomedical Research Centre at Newcastle Hospitals Foundation Trust and Newcastle University and Versus Arthritis Research into Inflammatory Arthritis Centre; ref. 22072).Funder: NIHR Birmingham BRC at the University Hospitals Birmingham NHS Foundation Trust and the University of BirminghamFunder: Wellcome Trust (Wellcome); doi: https://doi.org/10.13039/100004440Funder: National Institute for Health Research (NIHR) Oxford Biomedical Research CentreFunder: St Baldrick’s FoundationAbstract: Psoriatic arthritis (PsA) is a debilitating immune-mediated inflammatory arthritis of unknown pathogenesis commonly affecting patients with skin psoriasis. Here we use complementary single-cell approaches to study leukocytes from PsA joints. Mass cytometry demonstrates a 3-fold expansion of memory CD8 T cells in the joints of PsA patients compared to peripheral blood. Meanwhile, droplet-based and plate-based single-cell RNA sequencing of paired T cell receptor alpha and beta chain sequences show pronounced CD8 T cell clonal expansions within the joints. Transcriptome analyses find these expanded synovial CD8 T cells to express cycling, activation, tissue-homing and tissue residency markers. T cell receptor sequence comparison between patients identifies clonal convergence. Finally, chemokine receptor CXCR3 is upregulated in the expanded synovial CD8 T cells, while two CXCR3 ligands, CXCL9 and CXCL10, are elevated in PsA synovial fluid. Our data thus provide a quantitative molecular insight into the cellular immune landscape of psoriatic arthritis

    Single-cell reconstruction of the early maternal-fetal interface in humans.

    No full text
    During early human pregnancy the uterine mucosa transforms into the decidua, into which the fetal placenta implants and where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblast-decidual interactions underlie common diseases of pregnancy, including pre-eclampsia and stillbirth. Here we profile the transcriptomes of about 70,000 single cells from first-trimester placentas with matched maternal blood and decidual cells. The cellular composition of human decidua reveals subsets of perivascular and stromal cells that are located in distinct decidual layers. There are three major subsets of decidual natural killer cells that have distinctive immunomodulatory and chemokine profiles. We develop a repository of ligand-receptor complexes and a statistical tool to predict the cell-type specificity of cell-cell communication via these molecular interactions. Our data identify many regulatory interactions that prevent harmful innate or adaptive immune responses in this environment. Our single-cell atlas of the maternal-fetal interface reveals the cellular organization of the decidua and placenta, and the interactions that are critical for placentation and reproductive success.Wellcome Trust Centre for Trophoblast Research Human Frontier Science Program Long-Term Fellowship EMBO Long-Term Fellowship Royal Society Dorothy Hodgkin Fellowshi

    Spatiotemporal immune zonation of the human kidney.

    Get PDF
    Tissue-resident immune cells are important for organ homeostasis and defense. The epithelium may contribute to these functions directly or by cross-talk with immune cells. We used single-cell RNA sequencing to resolve the spatiotemporal immune topology of the human kidney. We reveal anatomically defined expression patterns of immune genes within the epithelial compartment, with antimicrobial peptide transcripts evident in pelvic epithelium in the mature, but not fetal, kidney. A network of tissue-resident myeloid and lymphoid immune cells was evident in both fetal and mature kidney, with postnatal acquisition of transcriptional programs that promote infection-defense capabilities. Epithelial-immune cross-talk orchestrated localization of antibacterial macrophages and neutrophils to the regions of the kidney most susceptible to infection. Overall, our study provides a global overview of how the immune landscape of the human kidney is zonated to counter the dominant immunological challenge.St Baldrick's Foundation (Robert J Arceci International Award to S.B.). Additional funding was received from the Wellcome Trust (S.B.: 110104/Z/15/Z; M.H.: 107931/Z/15/Z; studentships to B.J.S., G.C., A.M.R., and C.G.). Kidney cancer bio-sampling was funded by core infrastructural funding from the Cambridge Biomedical Research Campus (CBRC) and Cancer Research UK Cambridge Centre. Additional funding in support of individual authors was provided as follows: B.J.S (CRUK predoctoral bursary, C63442/A25230); M.R.C. (CBRC; NIHR Blood and Transplant Research Unit, RG75628; MRC New Investigator Research Grant, MR/N024907/1; Arthritis Research UK Cure Challenge Research Grant, 21777; NIHR Research Professorship RP-2017-08-ST2-002); M.H. (The Lister Institute for Preventative Medicine; NIHR and Newcastle-Biomedical Research Centre); A.F. (ISAC SRL-EL program); S.Lis, S.Lin. (joint Wellcome Trust/MRC, 099175/Z/12/Z); K.W.L (Kidney Research UK Clinical Training Fellowship, TF_013_20171124). R.V-T is supported by an EMBO Long-Term Fellowship and a Human Frontier Science Progra

    A cellular census of human lungs identifies novel cell states in health and in asthma.

    Get PDF
    Human lungs enable efficient gas exchange and form an interface with the environment, which depends on mucosal immunity for protection against infectious agents. Tightly controlled interactions between structural and immune cells are required to maintain lung homeostasis. Here, we use single-cell transcriptomics to chart the cellular landscape of upper and lower airways and lung parenchyma in healthy lungs, and lower airways in asthmatic lungs. We report location-dependent airway epithelial cell states and a novel subset of tissue-resident memory T cells. In the lower airways of patients with asthma, mucous cell hyperplasia is shown to stem from a novel mucous ciliated cell state, as well as goblet cell hyperplasia. We report the presence of pathogenic effector type 2 helper T cells (TH2) in asthmatic lungs and find evidence for type 2 cytokines in maintaining the altered epithelial cell states. Unbiased analysis of cell-cell interactions identifies a shift from airway structural cell communication in healthy lungs to a TH2-dominated interactome in asthmatic lungs.This work was funded by OpenTargets, an open innovation public-private partnership (http://www.opentargets.org), a GlaxoSmithKline collaborative agreement with University Medical Center Groningen, Wellcome (WT206194), EMBO and HFSP Long Term fellowships to R. Vento-Tormo, the Marie Curie ENLIGHT-TEN training network for Tomas Gomes, the Lung Foundation Netherlands (projects no 5.1.14.020 and 4.1.18.226), and Health-Holland, Top Sector Life Sciences & Health. LMS acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 753039, HBS acknowledges funding by the Helmholtz Association and the German Center for Lung Research (DZL). F.J.T. acknowledges financial support by the German Research Foundation (DFG) within the Collaborative Research Centre 1243, Subproject A17, by the Helmholtz Association (Incubator grant sparse2big, grant number ZT-I-0007) and by the Chan Zuckerberg Initiative DAF (advised fund of Silicon Valley Community Foundation), grant number 182835
    corecore